Auctions with Affiliated Information

Sushil Bikhchandani

Workshop on Mechanism Design
I.S.I. Delhi

August 4, 2015

Questions

Questions

- Revenue comparisons, and

Questions

- Revenue comparisons, and
- Efficiency

Questions

- Revenue comparisons, and
- Efficiency
in common types of auctions when bidder information is correlated

Common auctions for a single object

Open Format

Sealed-Bid Format

Common auctions for a single object

Open Format

Dutch or Descending-Price

Common auctions for a single object

Open Format

Dutch or Descending-Price

Sealed-Bid Format

First-Price

Common auctions for a single object

Open Format

Dutch or Descending-Price

English or Ascending-Price

Sealed-Bid Format

First-Price
 -

I

Common auctions for a single object

Open Format

Dutch or Descending-Price

English or Ascending-Price

Sealed-Bid Format

First-Price

Second-Price

Equivalences between auctions for a single object

Open

Dutch or Descending-Price

Sealed-Bid

First-Price

Equivalence

Always

Equivalences between auctions for a single object

Open

Dutch or Descending-Price

English or Ascending-Price

Sealed-Bid

First-Price

Second-Price

Equivalence

Always

Independent information
or two bidders

Symmetric, Interdependent Values Model

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i 's valuation is V_{i},

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i's valuation is V_{i}, information signal is X_{i}

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ have density function $f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)$

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ have density function $f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)$
- Symmetry

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ have density function $f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)$
- Symmetry

$$
f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right)
$$

Symmetric, Interdependent Values Model

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ have density function $f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)$
- Symmetry
$f\left(v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right)$
- Seller's cost is 0 . Bidders' valuation $0 \leq V_{i} \leq \bar{V}$
- All this is common knowledge

Symmetric, Interdependent Values Model

- Bidder i 's expected valuation is a function of signals $X_{1}, X_{2}, \ldots, X_{n}$

$$
\begin{aligned}
v\left(x_{i}, x_{-i}\right) & =\mathrm{E}\left[V_{i} \mid X_{i}=x_{i}, X_{-i}=x_{-i}\right] \\
& =\mathrm{E}\left[V_{j} \mid X_{j}=x_{i}, X_{-j}=x_{-i}\right]
\end{aligned}
$$

Symmetric, Interdependent Values Model

- Bidder i 's expected valuation is a function of signals $X_{1}, X_{2}, \ldots, X_{n}$

$$
\begin{aligned}
v\left(x_{i}, x_{-i}\right) & =\mathrm{E}\left[V_{i} \mid X_{i}=x_{i}, X_{-i}=x_{-i}\right] \\
& =\mathrm{E}\left[V_{j} \mid X_{j}=x_{i}, X_{-j}=x_{-i}\right]
\end{aligned}
$$

- Symmetry implies that permutations within x_{-i} do not change $v(\cdot)$.

For example,

$$
v\left(x_{i}, x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=v\left(x_{i}, x_{2}, x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Thus, $v(\cdot)$ is symmetric in all its arguments.

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Thus, $v(\cdot)$ is symmetric in all its arguments.

- Private values: $V_{i}=X_{i}$.

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Thus, $v(\cdot)$ is symmetric in all its arguments.

- Private values: $V_{i}=X_{i}$.

Thus, $v\left(x_{i}, x_{-i}\right)=x_{i}$

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Thus, $v(\cdot)$ is symmetric in all its arguments.

- Private values: $V_{i}=X_{i}$.

Thus, $v\left(x_{i}, x_{-i}\right)=x_{i}$

- Private independent values: $V_{i}=X_{i}$ and X_{i}, X_{j} independent random variables for all $i \neq j$

Special cases of interdependent values model

- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$.

Thus, $v(\cdot)$ is symmetric in all its arguments.

- Private values: $V_{i}=X_{i}$.

Thus, $v\left(x_{i}, x_{-i}\right)=x_{i}$

- Private independent values: $V_{i}=X_{i}$ and X_{i}, X_{j} independent random variables for all $i \neq j$
- Interdependent values, independent information:
X_{i}, X_{j} independent.
For example, X_{i} are i.i.d. $U[0,1]$ and $V_{i}=X_{i}+c \sum_{j \neq i} X_{j}$

Cases of interest

- Interdependent values: $v\left(x_{i}, x_{-i}\right)$
- Pure common values: $V_{1}=V_{2}=\ldots=V_{n}$
- Private values: $V_{i}=X_{i}$
- Private independent values: X_{i}, X_{j} independent
- Interdependent values, independent information:
X_{i}, X_{j} independent

Affiliation

$\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are random variables
$\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ and $\mathbf{z}^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{m}^{\prime}\right)$ are possible realizations of \mathbf{Z}.

Affiliation

$\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are random variables
$\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ and $\mathbf{z}^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{m}^{\prime}\right)$ are possible realizations of \mathbf{Z}.
Let ($\mathbf{z} \vee \mathbf{z}^{\prime}$) denote the componentwise maximum
and $\left(\mathbf{z} \wedge \mathbf{z}^{\prime}\right)$ denote the componentwise minimum

Affiliation

$\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are random variables
$\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ and $\mathbf{z}^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{m}^{\prime}\right)$ are possible realizations of \mathbf{Z}.
Let ($\mathbf{z} \vee \mathbf{z}^{\prime}$) denote the componentwise maximum and $\left(\mathbf{z} \wedge \mathbf{z}^{\prime}\right)$ denote the componentwise minimum

The random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated if for all $\mathbf{z}, \mathbf{z}^{\prime}$

$$
f\left(\mathbf{z} \vee \mathbf{z}^{\prime}\right) f\left(\mathbf{z} \wedge \mathbf{z}^{\prime}\right) \geq f(\mathbf{z}) f\left(\mathbf{z}^{\prime}\right)
$$

Implications of affiliation

If random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated then

Implications of affiliation

If random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated then
A1. Any subset of random variables $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated.
A2. Z_{1} and the order statistics of $\left(Z_{2}, \ldots, Z_{m}\right)$ are affiliated.

Implications of affiliation

If random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated then

Implications of affiliation

If random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated then
A3. With Y_{1} equal to the largest of Z_{2}, \ldots, Z_{m}

$$
\frac{g_{Y_{1} \mid Z_{1}}\left(y \mid z^{\prime}\right)}{G_{Y_{1} \mid Z_{1}}\left(y \mid z^{\prime}\right)} \leq \frac{g_{Y_{1} \mid Z_{1}}(y \mid z)}{G_{Y_{1} \mid Z_{1}}(y \mid z)}, \quad \forall y, \forall z^{\prime}<z
$$

Implications of affiliation

If random variables $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are affiliated then
A3. With Y_{1} equal to the largest of Z_{2}, \ldots, Z_{m}

$$
\frac{g_{Y_{1} \mid Z_{1}}\left(y \mid z^{\prime}\right)}{G_{Y_{1} \mid Z_{1}}\left(y \mid z^{\prime}\right)} \leq \frac{g_{Y_{1} \mid Z_{1}}(y \mid z)}{G_{Y_{1} \mid Z_{1}}(y \mid z)}, \quad \forall y, \forall z^{\prime}<z
$$

A4. If $h\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ is an increasing function then

$$
\mathrm{E}\left[h\left(z_{1}, z_{2}, \ldots, z_{m}\right) \mid\left(z_{1}^{a}, z_{2}^{a}, \ldots, z_{m}^{a}\right) \leq \mathbf{Z} \leq\left(z_{1}^{b}, z_{2}^{b}, \ldots, z_{m}^{b}\right)\right]
$$

is increasing in each z_{i}^{a}, z_{i}^{b}.

Assumption

The random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ are affiliated.

Assumption

The random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ are affiliated.
Therefore, with $Y_{1}=\max \left\{X_{2}, \ldots, X_{n}\right\}$,

$$
\begin{aligned}
v\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{1}=x_{2}, \ldots, X=x_{n}\right] \\
\text { and } \quad w(x, y) & \equiv \mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]
\end{aligned}
$$

$v(\cdot)$ and $w(\cdot)$ are increasing functions.

Assumption

The random variables $\left(V_{1}, V_{2}, \ldots, V_{n}, X_{1}, X_{2}, \ldots, X_{n}\right)$ are affiliated.
Therefore, with $Y_{1}=\max \left\{X_{2}, \ldots, X_{n}\right\}$,

$$
\begin{aligned}
v\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{1}=x_{2}, \ldots, X=x_{n}\right] \\
\text { and } \quad w(x, y) & \equiv \mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]
\end{aligned}
$$

$v(\cdot)$ and $w(\cdot)$ are increasing functions.
Further,

$$
\frac{g\left(y \mid x^{\prime}\right)}{G\left(y \mid x^{\prime}\right)} \leq \frac{g(y \mid x)}{G(y \mid x)}, \quad \forall y, \quad \forall x^{\prime}<x
$$

where g is conditional density \& G the conditional cdf of Y_{1} given X_{1}.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.
Suppose that $X_{1}=x$ and $Y_{1}=y$.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.
Suppose that $X_{1}=x$ and $Y_{1}=y$.
Bidder 1's expected valuation is $w(x, y)=\mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]$.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.
Suppose that $X_{1}=x$ and $Y_{1}=y$.
Bidder 1's expected valuation is $w(x, y)=\mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]$.
If bidder 1 wins the auction, he pays $b_{s}(y)=w(y, y)$. Because

$$
w(x, y)-w(y, y) \lessgtr 0 \quad \text { as } \quad x \lessgtr y
$$

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.
Suppose that $X_{1}=x$ and $Y_{1}=y$.
Bidder 1's expected valuation is $w(x, y)=\mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]$.
If bidder 1 wins the auction, he pays $b_{s}(y)=w(y, y)$. Because

$$
w(x, y)-w(y, y) \lessgtr 0 \quad \text { as } \quad x \lessgtr y
$$

$b_{s}(x)=w(x, x)$ is a best response for bidder 1 as he wins iff $x>y$.

Equilibrium in second-price auction

Claim: $b_{s}(x) \equiv w(x, x)$ is a symmetric Nash equilibrium strategy.
Proof: Suppose that bidders $2, \ldots, n$ play $b_{s}(\cdot)$.
Suppose that $X_{1}=x$ and $Y_{1}=y$.
Bidder 1's expected valuation is $w(x, y)=\mathrm{E}\left[V_{1} \mid X_{1}=x, Y_{1}=y\right]$.
If bidder 1 wins the auction, he pays $b_{s}(y)=w(y, y)$. Because

$$
w(x, y)-w(y, y) \lessgtr 0 \quad \text { as } \quad x \lessgtr y
$$

$b_{s}(x)=w(x, x)$ is a best response for bidder 1 as he wins iff $x>y$.
In fact, each bidder playing b_{s} constitutes an ex post equilibrium.

Naive estimation and winner's curse

$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an unbiased estimate of V_{1}

Naive estimation and winner's curse

$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an unbiased estimate of V_{1}
$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an overestimate of V_{1} when bidder 1 is the winner

Naive estimation and winner's curse

$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an unbiased estimate of V_{1}
$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an overestimate of V_{1} when bidder 1 is the winner $w\left(X_{1}, Y_{1}\right)=\mathrm{E}\left[V_{1} \mid X_{1}, Y_{1}<X_{1}\right]$ is an unbiased estimate of V_{1} when bidder 1 is the winner

Naive estimation and winner's curse

$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an unbiased estimate of V_{1}
$\mathrm{E}\left[V_{1} \mid X_{1}\right]$ is an overestimate of V_{1} when bidder 1 is the winner
$w\left(X_{1}, Y_{1}\right)=\mathrm{E}\left[V_{1} \mid X_{1}, Y_{1}<X_{1}\right]$ is an unbiased estimate of V_{1} when
bidder 1 is the winner
Winner's curse is not an equilibrium phenomenon

Naive estimation and winner's curse

$\mathrm{E}\left[V \mid X_{i}\right]$ is unbiased, but an estimate based on the winner's signal (i.e., bidder with $\max X_{i}$) will be optimistic.

Naive estimation and winner's curse

$\mathrm{E}\left[V \mid X_{i}\right]$ is unbiased, but an estimate based on the winner's signal (i.e., bidder with $\max X_{i}$) will be optimistic.

To see this, suppose that $X_{i}=V+\epsilon_{i}$ where $\epsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$.

Naive estimation and winner's curse

$\mathrm{E}\left[V \mid X_{i}\right]$ is unbiased, but an estimate based on the winner's signal (i.e., bidder with $\max X_{i}$) will be optimistic.

To see this, suppose that $X_{i}=V+\epsilon_{i}$ where $\epsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$.

n	1	2	5	10
$\mathrm{E}\left[\max \epsilon_{i}\right]=\mathrm{E}\left[\max \left(X_{i}-V\right)\right]$	0	0.564σ	1.163σ	1.539σ

Winner's curse in oil lease auctions

Bids on offshore oil tracts (\$ millions), 1967-69

	Louisiana	Santa Barbara	Texas	Alaska
Highest bid	32.5	43.5	43.5	10.5
$2^{\text {nd }}$ highest bid	17.7	32.1	15.5	5.2
Lowest bid	3.1	6.1	0.4	0.4
Money left on table	14.8	11.4	28	5.3
Highest/Lowest ratio	10	7	109	26

From Capen, Clapp, and Campbell, "Competitive Bidding in High Risk Situations," Journal of Petroleum Technology, 1971, 23, 641-653.

Equilibrium in first-price auction

Define

$$
b_{f}(x) \equiv \int_{0}^{x} w(y, y) d L(y \mid x)
$$

Equilibrium in first-price auction

Define

$$
\begin{aligned}
b_{f}(x) & \equiv \int_{0}^{x} w(y, y) d L(y \mid x) \\
\text { where } \quad L(y \mid x) & =\exp \left(-\int_{y}^{x} \frac{g(t \mid t)}{G(t \mid t)} d t\right)
\end{aligned}
$$

Equilibrium in first-price auction

Define

$$
\begin{aligned}
b_{f}(x) & \equiv \int_{0}^{x} w(y, y) d L(y \mid x) \\
\text { where } \quad L(y \mid x) & =\exp \left(-\int_{y}^{x} \frac{g(t \mid t)}{G(t \mid t)} d t\right)
\end{aligned}
$$

and $g(y \mid x)$ is the density and $G(y \mid x)$ is the cdf of $Y_{1}=y$ given $X_{1}=x$.

Equilibrium in first-price auction

Define

$$
\begin{aligned}
b_{f}(x) & \equiv \int_{0}^{x} w(y, y) d L(y \mid x) \\
\text { where } \quad L(y \mid x) & =\exp \left(-\int_{y}^{x} \frac{g(t \mid t)}{G(t \mid t)} d t\right)
\end{aligned}
$$

and $g(y \mid x)$ is the density and $G(y \mid x)$ is the cdf of $Y_{1}=y$ given $X_{1}=x$.
$b_{f}(x)$ is the solution to the differential equation

$$
\frac{d b(x)}{d x}=[w(x, x)-b(x)] \frac{g(x \mid x)}{G(x \mid x)}
$$

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\Pi(\hat{x}, x)=\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x)
$$

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\begin{aligned}
\Pi(\hat{x}, x) & =\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x) \\
\frac{\partial \Pi}{\partial \hat{x}} & =\left\{\left[w(x, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)
\end{aligned}
$$

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\begin{aligned}
\Pi(\hat{x}, x) & =\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x) \\
\frac{\partial \Pi}{\partial \hat{x}} & =\left\{\left[w(x, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)
\end{aligned}
$$

F.O.C. is satisfied at $\hat{x}=x$ as b_{f} is soln. to diff. eqn. within $\}$.

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\begin{aligned}
\Pi(\hat{x}, x) & =\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x) \\
\frac{\partial \Pi}{\partial \hat{x}} & =\left\{\left[w(x, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)
\end{aligned}
$$

F.O.C. is satisfied at $\hat{x}=x$ as b_{f} is soln. to diff. eqn. within $\}$. If $\hat{x}>x$ then $\frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)} \leq \frac{g(\hat{x} \mid \hat{x})}{G(\hat{x} \mid \hat{x})}$ and $w(x, \hat{x}) \leq w(\hat{x}, \hat{x})$.

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\begin{aligned}
\Pi(\hat{x}, x) & =\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x) \\
\frac{\partial \Pi}{\partial \hat{x}} & =\left\{\left[w(x, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)
\end{aligned}
$$

F.O.C. is satisfied at $\hat{x}=x$ as b_{f} is soln. to diff. eqn. within $\}$. If $\hat{x}>x$ then $\frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)} \leq \frac{g(\hat{x} \mid \hat{x})}{G(\hat{x} \mid \hat{x})}$ and $w(x, \hat{x}) \leq w(\hat{x}, \hat{x})$. Thus,

$$
\frac{\partial \Pi}{\partial \hat{x}} \leq\left\{\left[w(\hat{x}, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid \hat{x})}{G(\hat{x} \mid \hat{x})}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)=0
$$

Equilibrium in first-price auction

Claim: b_{f} is a symmetric Nash equilibrium strategy.
Proof: Bidder 1's expected profit when $X_{1}=x$ and he bids as if $X_{1}=\hat{x}$ is

$$
\begin{aligned}
\Pi(\hat{x}, x) & =\int_{0}^{\hat{x}} w(x, y) g(y \mid x) d y-b_{f}(\hat{x}) G(\hat{x} \mid x) \\
\frac{\partial \Pi}{\partial \hat{x}} & =\left\{\left[w(x, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)
\end{aligned}
$$

F.O.C. is satisfied at $\hat{x}=x$ as b_{f} is soln. to diff. eqn. within $\}$. If $\hat{x}>x$ then $\frac{g(\hat{x} \mid x)}{G(\hat{x} \mid x)} \leq \frac{g(\hat{x} \mid \hat{x})}{G(\hat{x} \mid \hat{x})}$ and $w(x, \hat{x}) \leq w(\hat{x}, \hat{x})$. Thus,

$$
\frac{\partial \Pi}{\partial \hat{x}} \leq\left\{\left[w(\hat{x}, \hat{x})-b_{f}(\hat{x})\right] \frac{g(\hat{x} \mid \hat{x})}{G(\hat{x} \mid \hat{x})}-\frac{d b_{f}(\hat{x})}{d \hat{x}}\right\} G(\hat{x} \mid x)=0
$$

Similarly, if $\hat{x}<x$ then $\frac{\partial \Pi}{\partial \hat{x}} \geq 0$.

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price. Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price. Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.
$P_{s}(x)=\int_{0}^{x} w(y, y) g(y \mid x) d y$

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.
Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

$$
\begin{aligned}
P_{s}(x) & =\int_{0}^{x} w(y, y) g(y \mid x) d y \\
& =\int_{0}^{x}\left[w(y, y)-b_{f}(y)\right] g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y
\end{aligned}
$$

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.
Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

$$
\begin{aligned}
P_{s}(x) & =\int_{0}^{x} w(y, y) g(y \mid x) d y \\
& =\int_{0}^{x}\left[w(y, y)-b_{f}(y)\right] g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid y)}{g(y \mid y)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y
\end{aligned}
$$

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.
Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

$$
\begin{aligned}
P_{s}(x) & =\int_{0}^{x} w(y, y) g(y \mid x) d y \\
& =\int_{0}^{x}\left[w(y, y)-b_{f}(y)\right] g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid y)}{g(y \mid y)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& \geq \int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid x)}{g(y \mid x)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y
\end{aligned}
$$

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.
Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

$$
\begin{aligned}
P_{s}(x) & =\int_{0}^{x} w(y, y) g(y \mid x) d y \\
& =\int_{0}^{x}\left[w(y, y)-b_{f}(y)\right] g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid y)}{g(y \mid y)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& \geq \int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid x)}{g(y \mid x)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} G(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y
\end{aligned}
$$

Revenue Ranking I

Claim: Second-price auction yields greater expected revenue than first-price.
Proof: The expected payments by a bidder with signal x are $P_{s}(x)$ and $P_{f}(x)$.

$$
\begin{aligned}
P_{s}(x) & =\int_{0}^{x} w(y, y) g(y \mid x) d y \\
& =\int_{0}^{x}\left[w(y, y)-b_{f}(y)\right] g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid y)}{g(y \mid y)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& \geq \int_{0}^{x} \frac{d b_{f}(y)}{d y} \frac{G(y \mid x)}{g(y \mid x)} g(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{d b_{f}(y)}{d y} G(y \mid x) d y+\int_{0}^{x} b_{f}(y) g(y \mid x) d y \\
& =\int_{0}^{x} \frac{\partial\left[b_{f}(y) G(y \mid x)\right]}{\partial y} d y=b_{f}(x) G(x \mid x)=P_{f}(x)
\end{aligned}
$$

Importance of affiliated information signals

An example with two bidders:
$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}$ with $0 \leq c \leq 1$.

Importance of affiliated information signals

An example with two bidders:
$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}$ with $0 \leq c \leq 1$.
X_{1} and X_{2} are i.i.d. uniformly distributed on $[0,1]$.

Importance of affiliated information signals

An example with two bidders:
$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}$ with $0 \leq c \leq 1$.
X_{1} and X_{2} are i.i.d. uniformly distributed on $[0,1]$.
Then $b_{s}(x)=(1+c) x$ and $b_{f}(x)=\frac{1+c}{2} x$.

Importance of affiliated information signals

An example with two bidders:
$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}$ with $0 \leq c \leq 1$.
X_{1} and X_{2} are i.i.d. uniformly distributed on $[0,1]$.
Then $b_{s}(x)=(1+c) x$ and $b_{f}(x)=\frac{1+c}{2} x$.

Expected revenue in the two auctions

$$
\begin{aligned}
& P_{s}=\mathrm{E}\left[(1+c) \min \left\{X_{1}, X_{2}\right\}\right]=\frac{1+c}{3} \\
& P_{f}=\mathrm{E}\left[\frac{1+c}{2} \max \left\{X_{1}, X_{2}\right\}\right]=\frac{1+c}{3}
\end{aligned}
$$

Importance of affiliated information signals

An example with two bidders:
$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}$ with $0 \leq c \leq 1$.
X_{1} and X_{2} are i.i.d. uniformly distributed on $[0,1]$.
Then $b_{s}(x)=(1+c) x$ and $b_{f}(x)=\frac{1+c}{2} x$.
Expected revenue in the two auctions

$$
\begin{aligned}
& P_{s}=\mathrm{E}\left[(1+c) \min \left\{X_{1}, X_{2}\right\}\right]=\frac{1+c}{3} \\
& P_{f}=\mathrm{E}\left[\frac{1+c}{2} \max \left\{X_{1}, X_{2}\right\}\right]=\frac{1+c}{3}
\end{aligned}
$$

Revenue equivalence, even though V_{1}, V_{2} are affiliated!

English Auction with 3 bidders

Define

$$
\begin{aligned}
b_{e, 0}(x) & =\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right] \\
b_{e, 1}(x ; p) & =\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
\end{aligned}
$$

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing $\left(b_{e, 0}, b_{e, 1}\right)$ is an ex post equilibrium.

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing $\left(b_{e, 0}, b_{e, 1}\right)$ is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt $\left(b_{e, 0}, b_{e, 1}\right)$.

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing $\left(b_{e, 0}, b_{e, 1}\right)$ is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt ($b_{e, 0}, b_{e, 1}$).
Suppose that $X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}$, with $x_{2} \geq x_{3}$.

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing ($b_{e, 0}, b_{e, 1}$) is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt ($b_{e, 0}, b_{e, 1}$).
Suppose that $X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}$, with $x_{2} \geq x_{3}$.
Bidder 1's expected valuation is $\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right]$.

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing ($b_{e, 0}, b_{e, 1}$) is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt ($b_{e, 0}, b_{e, 1}$).
Suppose that $X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}$, with $x_{2} \geq x_{3}$.
Bidder 1's expected valuation is $\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right]$.
If bidder 1 wins the auction, he pays

$$
\mathrm{E}\left[V_{2} \mid X_{2}=x_{2}, X_{1}=x_{2}, X_{3}=x_{3}\right]=\mathrm{E}\left[V_{1} \mid X_{1}=x_{2}, X_{2}=x_{2}, X_{3}=x_{3}\right]
$$

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing ($b_{e, 0}, b_{e, 1}$) is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt ($b_{e, 0}, b_{e, 1}$).
Suppose that $X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}$, with $x_{2} \geq x_{3}$.
Bidder 1's expected valuation is $\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right]$.
If bidder 1 wins the auction, he pays

$$
\mathrm{E}\left[V_{2} \mid X_{2}=x_{2}, X_{1}=x_{2}, X_{3}=x_{3}\right]=\mathrm{E}\left[V_{1} \mid X_{1}=x_{2}, X_{2}=x_{2}, X_{3}=x_{3}\right]
$$

His surplus upon winning is non-negative iff $x_{1} \geq x_{2}\left(\geq x_{3}\right)$.

English Auction with 3 bidders

$$
b_{e, 0}(x)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=x\right], \quad b_{e, 1}(x ; p)=\mathrm{E}\left[V_{1} \mid X_{1}=x, X_{2}=x, X_{3}=b_{e, 0}^{-1}(p)\right]
$$

Claim: Each bidder playing ($b_{e, 0}, b_{e, 1}$) is an ex post equilibrium.
Proof: Suppose that bidders 2, 3 adopt ($b_{e, 0}, b_{e, 1}$).
Suppose that $X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}$, with $x_{2} \geq x_{3}$.
Bidder 1's expected valuation is $\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right]$.
If bidder 1 wins the auction, he pays

$$
\mathrm{E}\left[V_{2} \mid X_{2}=x_{2}, X_{1}=x_{2}, X_{3}=x_{3}\right]=\mathrm{E}\left[V_{1} \mid X_{1}=x_{2}, X_{2}=x_{2}, X_{3}=x_{3}\right]
$$

His surplus upon winning is non-negative iff $x_{1} \geq x_{2}\left(\geq x_{3}\right)$.
Therefore, bidder 1 maximizes surplus by playing ($b_{e, 0}, b_{e, 1}$).

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions P_{s} and P_{e}.

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions P_{s} and P_{e}.
If $x>y$ then

$$
w(y, y)=\mathrm{E}\left[V_{1} \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right]
$$

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions P_{s} and P_{e}.
If $x>y$ then

$$
\begin{aligned}
w(y, y) & =\mathrm{E}\left[V_{1} \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& \leq \mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=x, \max \left\{X_{2}, X_{3}\right\}=y\right]
\end{aligned}
$$

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions P_{s} and P_{e}.
If $x>y$ then

$$
\begin{aligned}
w(y, y) & =\mathrm{E}\left[V_{1} \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& \leq \mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=x, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& =\mathrm{E}\left[v\left(\max \left\{X_{2}, X_{3}\right\}, X_{2}, X_{3}\right) \mid X_{1}=x, \max \left\{X_{2}, X_{3}\right\}=y\right]
\end{aligned}
$$

Revenue Ranking II

Claim: With three (or more) bidders, English auctions yield greater expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions P_{s} and P_{e}.
If $x>y$ then

$$
\begin{aligned}
w(y, y) & =\mathrm{E}\left[V_{1} \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=y, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& \leq \mathrm{E}\left[\mathrm{E}\left[V_{1} \mid X_{1}=y, X_{2}, X_{3}\right] \mid X_{1}=x, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
& =\mathrm{E}\left[v\left(\max \left\{X_{2}, X_{3}\right\}, X_{2}, X_{3}\right) \mid X_{1}=x, \max \left\{X_{2}, X_{3}\right\}=y\right] \\
P_{s} & =\mathrm{E}\left[\mathrm{E}\left[w\left(Y_{1}, Y_{1}\right) \mid X_{1}, X_{1}>Y_{1}\right]\right] \\
& \leq \mathrm{E}\left[\mathrm{E}\left[v\left(\max \left\{X_{2}, X_{3}\right\}, X_{2}, X_{3}\right) \mid X_{1}, X_{1}>Y_{1}\right]\right]=P_{e}
\end{aligned}
$$

The Linkage Principle

The Linkage Principle

In a second-price auction, the winner's payment depends on the second-highest bidder's information.

The Linkage Principle

In a second-price auction, the winner's payment depends on the second-highest bidder's information.

In an English auction, the winner's payment depends on the information of all losing bidders.

The Linkage Principle

In a second-price auction, the winner's payment depends on the second-highest bidder's information.

In an English auction, the winner's payment depends on the information of all losing bidders.

Linking a bidder's expected payments to others' information weakens the winner's curse.

The Linkage Principle

In a second-price auction, the winner's payment depends on the second-highest bidder's information.

In an English auction, the winner's payment depends on the information of all losing bidders.

Linking a bidder's expected payments to others' information weakens the winner's curse.

This leads to more aggressive bidding and, as the pie is fixed in all three auctions, greater expected revenues for the auctioneer.

Other implications of the Linkage Principle

Honesty is the best policy for the auctioneer.

Other implications of the Linkage Principle

Honesty is the best policy for the auctioneer.
Greater revenues with royalty payments.

Caveats to the Linkage Principle

Caveats to the Linkage Principle

May not hold in asymmetric models

Caveats to the Linkage Principle

May not hold in asymmetric models or in multi-object auctions

Efficiency

In a pure common values environment, everything is efficient.

Efficiency

In a pure common values environment, everything is efficient.

In non-common value settings ...

Efficiency

In a pure common values environment, everything is efficient.

In non-common value settings ...
In a symmetric model, each of the three auctions - first-price, second-price,
English - allocate the object to the bidder with the highest signal.

Efficiency

In a pure common values environment, everything is efficient.

In non-common value settings ...
In a symmetric model, each of the three auctions - first-price, second-price,
English - allocate the object to the bidder with the highest signal. Is that efficient?

An example of inefficient allocation

$$
V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}, \quad c>1
$$

An example of inefficient allocation

$$
V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}, \quad c>1
$$

X_{1} and X_{2} are each identically distributed on $[0,1]$ - may be dependent.

An example of inefficient allocation

$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}, \quad c>1$
X_{1} and X_{2} are each identically distributed on $[0,1]$ - may be dependent.
$b_{s}(x)$ and $b_{f}(x)$ are increasing in x.

An example of inefficient allocation

$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}, \quad c>1$
X_{1} and X_{2} are each identically distributed on $[0,1]$ - may be dependent.
$b_{s}(x)$ and $b_{f}(x)$ are increasing in x.
If $X_{1}>X_{2}$ then $V_{1}<V_{2}$.

An example of inefficient allocation

$V_{1}=X_{1}+c X_{2}, V_{2}=X_{2}+c X_{1}, \quad c>1$
X_{1} and X_{2} are each identically distributed on $[0,1]$ - may be dependent.
$b_{s}(x)$ and $b_{f}(x)$ are increasing in x.
If $X_{1}>X_{2}$ then $V_{1}<V_{2}$.
Therefore, the bidder with the lower valuation obtains object!

A sufficient condition for efficiency

Recall that, for our symmetric model,

$$
\begin{aligned}
v\left(x_{1}, x_{-1}\right) & =\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{-1}=x_{-1}\right] \\
& =\mathrm{E}\left[V_{i} \mid X_{i}=x_{1}, X_{-i}=x_{-1}\right]
\end{aligned}
$$

and $v\left(x_{1}, x_{-1}\right)$ is symmetric in its last $n-1$ arguments.

A sufficient condition for efficiency

Recall that, for our symmetric model,

$$
\begin{aligned}
v\left(x_{1}, x_{-1}\right) & =\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{-1}=x_{-1}\right] \\
& =\mathrm{E}\left[V_{i} \mid X_{i}=x_{1}, X_{-i}=x_{-1}\right]
\end{aligned}
$$

and $v\left(x_{1}, x_{-1}\right)$ is symmetric in its last $n-1$ arguments.

Single-crossing condition: If

$$
\frac{\partial v\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \geq \frac{\partial v\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}}
$$

then the three auctions are efficient in symmetric model.

A sufficient condition for efficiency

Recall that, for our symmetric model,

$$
\begin{aligned}
v\left(x_{1}, x_{-1}\right) & =\mathrm{E}\left[V_{1} \mid X_{1}=x_{1}, X_{-1}=x_{-1}\right] \\
& =\mathrm{E}\left[V_{i} \mid X_{i}=x_{1}, X_{-i}=x_{-1}\right]
\end{aligned}
$$

and $v\left(x_{1}, x_{-1}\right)$ is symmetric in its last $n-1$ arguments.

Single-crossing condition: If

$$
\frac{\partial v\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \geq \frac{\partial v\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}}
$$

then the three auctions are efficient in symmetric model.
In asymmetric models, English auctions are more efficient than second-price auctions are more efficient than first-price auctions.

