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Common auctions for a single object

Open Format Sealed-Bid Format

Dutch or Descending-Price First-Price

English or Ascending-Price Second-Price
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Equivalences between auctions for a single object

Open Sealed-Bid Equivalence

Dutch or Descending-Price First-Price Always

English or Ascending-Price Second-Price Independent information

or two bidders
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Symmetric, Interdependent Values Model

Single indivisible object

n risk-neutral buyers or bidders, i = 1, 2, . . . , n

Bidder i ’s valuation is Vi , information signal is Xi

Random variables (V1,V2, . . . ,Vn, X1,X2, . . . ,Xn) have density

function f (v1, v2, . . . , vn, x1, x2, . . . , xn)

Symmetry

f (v1, v2, . . . , vn, x1, x2, . . . , xn) = f (vi1 , vi2 , . . . , vin , xi1 , xi2 , . . . , xin)

Seller’s cost is 0. Bidders’ valuation 0 ≤ Vi ≤ V

All this is common knowledge
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Symmetric, Interdependent Values Model

Bidder i ’s expected valuation is a function of signals X1,X2, . . . ,Xn

v(xi , x−i ) = E[Vi |Xi = xi ,X−i = x−i ]

= E[Vj |Xj = xi ,X−j = x−i ]

Symmetry implies that permutations within x−i do not change v(·).

For example,

v(xi , x1, x2, . . . , xi−1, xi+1, . . . , xn) = v(xi , x2, x1, . . . , xi−1, xi+1, . . . , xn)
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Special cases of interdependent values model

Pure common values: V1 = V2 = . . . = Vn.

Thus, v(·) is symmetric in all its arguments.

Private values: Vi = Xi .

Thus, v(xi , x−i ) = xi

Private independent values: Vi = Xi and Xi , Xj independent

random variables for all i 6= j

Interdependent values, independent information:

Xi , Xj independent.

For example, Xi are i.i.d. U[0, 1] and Vi = Xi + c
∑

j 6=i Xj
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Cases of interest

Interdependent values: v(xi , x−i )

Pure common values: V1 = V2 = . . . = Vn

Private values: Vi = Xi

Private independent values: Xi , Xj independent

Interdependent values, independent information:

Xi , Xj independent
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Affiliation

Z = (Z1,Z2, . . . ,Zm) are random variables

z = (z1, z2, . . . , zm) and z′ = (z ′1, z
′
2, . . . , z

′
m) are possible realizations of Z.

Let (z ∨ z′) denote the componentwise maximum

and (z ∧ z′) denote the componentwise minimum

The random variables Z = (Z1,Z2, . . . ,Zm) are affiliated if for all z, z′

f (z ∨ z′)f (z ∧ z′) ≥ f (z)f (z′)
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Implications of affiliation

If random variables Z = (Z1,Z2, . . . ,Zm) are affiliated then

A1. Any subset of random variables (Z1,Z2, . . . ,Zm) are affiliated.

A2. Z1 and the order statistics of (Z2, . . . ,Zm) are affiliated.
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Implications of affiliation

If random variables Z = (Z1,Z2, . . . ,Zm) are affiliated then

A3. With Y1 equal to the largest of Z2, . . . ,Zm

gY1|Z1
(y |z ′)

GY1|Z1
(y |z ′)

≤
gY1|Z1

(y |z)

GY1|Z1
(y |z)

, ∀y , ∀z ′ < z

A4. If h(z1, z2, . . . , zm) is an increasing function then

E[h(z1, z2, . . . , zm) | (za1 , za2 , . . . , zam) ≤ Z ≤ (zb1 , z
b
2 , . . . , z

b
m)]

is increasing in each zai , zbi .
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Assumption

The random variables (V1,V2, . . . ,Vn, X1,X2, . . . ,Xn) are affiliated.

Therefore, with Y1 = max{X2, . . . ,Xn},
v(x1, x2, . . . , xn) = E[V1|X1 = x1,X1 = x2, . . . ,X = xn]

and w(x , y) ≡ E[V1|X1 = x ,Y1 = y ]

v(·) and w(·) are increasing functions.

Further,
g(y |x ′)
G (y |x ′)

≤ g(y |x)

G (y |x)
, ∀y , ∀x ′ < x

where g is conditional density & G the conditional cdf of Y1 given X1.
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Equilibrium in second-price auction

Claim: bs(x) ≡ w(x , x) is a symmetric Nash equilibrium strategy.

Proof: Suppose that bidders 2, . . . , n play bs(·).

Suppose that X1 = x and Y1 = y .

Bidder 1’s expected valuation is w(x , y) = E[V1|X1 = x ,Y1 = y ].

If bidder 1 wins the auction, he pays bs(y) = w(y , y). Because

w(x , y)− w(y , y) ≶ 0 as x ≶ y

bs(x) = w(x , x) is a best response for bidder 1 as he wins iff x > y . �

In fact, each bidder playing bs constitutes an ex post equilibrium.
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Naive estimation and winner’s curse

E[V1|X1] is an unbiased estimate of V1

E[V1|X1] is an overestimate of V1 when bidder 1 is the winner

w(X1,Y1) = E[V1|X1,Y1 < X1] is an unbiased estimate of V1 when

bidder 1 is the winner

Winner’s curse is not an equilibrium phenomenon
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Naive estimation and winner’s curse

E[V |Xi ] is unbiased, but an estimate based on the winner’s signal (i.e.,

bidder with maxXi ) will be optimistic.

To see this, suppose that Xi = V + εi where εi ∼ N(0, σ2).

n 1 2 5 10

E[max εi ] = E[max(Xi − V )] 0 0.564σ 1.163σ 1.539σ
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Winner’s curse in oil lease auctions

Bids on offshore oil tracts ($ millions), 1967-69

From Capen, Clapp, and Campbell, “Competitive Bidding in High Risk Situations,” Journal of Petroleum Technology,
1971, 23, 641-653.

Louisiana
Santa 
Barbara

Texas Alaska 

Highest bid 32.5 43.5 43.5 10.5

2nd highest bid 17.7 32.1 15.5 5.2

Lowest bid 3.1 6.1 0.4 0.4

Money left on table 14.8 11.4 28 5.3

Highest/Lowest ratio 10 7 109 26
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Equilibrium in first-price auction

Define

bf (x) ≡
∫ x

0
w(y , y)dL(y |x)

where L(y |x) = exp

(
−
∫ x

y

g(t|t)

G (t|t)
dt

)
and g(y |x) is the density and G (y |x) is the cdf of Y1 = y given X1 = x .

bf (x) is the solution to the differential equation

db(x)

dx
= [w(x , x)− b(x)]

g(x |x)

G (x |x)
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Equilibrium in first-price auction
Claim: bf is a symmetric Nash equilibrium strategy.

Proof: Bidder 1’s expected profit when X1 = x and he bids as if X1 = x̂ is

Π(x̂ , x) =

∫ x̂

0
w(x , y)g(y |x)dy − bf (x̂)G (x̂ |x)

∂Π

∂x̂
=

{
[w(x , x̂)− bf (x̂)]

g(x̂ |x)

G (x̂ |x)
− dbf (x̂)

dx̂

}
G (x̂ |x)

F.O.C. is satisfied at x̂ = x as bf is soln. to diff. eqn. within { }.

If x̂ > x then g(x̂ |x)
G(x̂ |x) ≤

g(x̂ |x̂)
G(x̂ |x̂) and w(x , x̂) ≤ w(x̂ , x̂). Thus,

∂Π

∂x̂
≤
{

[w(x̂ , x̂)− bf (x̂)]
g(x̂ |x̂)

G (x̂ |x̂)
− dbf (x̂)

dx̂

}
G (x̂ |x) = 0

Similarly, if x̂ < x then ∂Π
∂x̂ ≥ 0. �
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Revenue Ranking I
Claim: Second-price auction yields greater expected revenue than first-price.

Proof: The expected payments by a bidder with signal x are Ps(x) and Pf (x).

Ps(x) =

∫ x

0

w(y , y)g(y |x)dy

=

∫ x

0

[w(y , y)− bf (y)]g(y |x)dy +

∫ x

0

bf (y)g(y |x)dy

=

∫ x

0

dbf (y)

dy

G (y |y)

g(y |y)
g(y |x)dy +

∫ x

0

bf (y)g(y |x)dy

≥
∫ x

0

dbf (y)

dy

G (y |x)

g(y |x)
g(y |x)dy +

∫ x

0

bf (y)g(y |x)dy

=

∫ x

0

dbf (y)

dy
G (y |x)dy +

∫ x

0

bf (y)g(y |x)dy

=

∫ x

0

∂[bf (y)G (y |x)]

∂y
dy = bf (x)G (x |x) = Pf (x) �
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Importance of affiliated information signals

An example with two bidders:

V1 = X1 + cX2, V2 = X2 + cX1 with 0 ≤ c ≤ 1.

X1 and X2 are i.i.d. uniformly distributed on [0, 1].

Then bs(x) = (1 + c)x and bf (x) = 1+c
2 x .

Expected revenue in the two auctions

Ps = E
[
(1 + c) min{X1,X2}

]
=

1 + c

3

Pf = E
[1 + c

2
max{X1,X2}

]
=

1 + c

3

Revenue equivalence, even though V1,V2 are affiliated!
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English Auction with 3 bidders

Define

be,0(x) = E[V1|X1 = x ,X2 = x ,X3 = x ]

be,1(x ; p) = E[V1|X1 = x ,X2 = x ,X3 = b−1
e,0(p)]
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e,0 (p)]

Claim: Each bidder playing (be,0, be,1) is an ex post equilibrium.

Proof: Suppose that bidders 2, 3 adopt (be,0, be,1).

Suppose that X1 = x1, X2 = x2, X3 = x3, with x2 ≥ x3.

Bidder 1’s expected valuation is E[V1|X1 = x1,X2 = x2,X3 = x3].

If bidder 1 wins the auction, he pays

E[V2|X2 = x2,X1 = x2,X3 = x3] = E[V1|X1 = x2,X2 = x2,X3 = x3].

His surplus upon winning is non-negative iff x1 ≥ x2 (≥ x3).

Therefore, bidder 1 maximizes surplus by playing (be,0, be,1). �
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Revenue Ranking II
Claim: With three (or more) bidders, English auctions yield greater
expected revenue than second-price auctions.

Proof: Expected revenues in the two auctions Ps and Pe .

If x > y then

w(y , y) = E[V1|X1 = y ,max{X2,X3} = y ]

= E[E[V1|X1 = y ,X2,X3]|X1 = y ,max{X2,X3} = y ]

≤ E[E[V1|X1 = y ,X2,X3]|X1 = x ,max{X2,X3} = y ]

= E[v(max{X2,X3},X2,X3)|X1 = x ,max{X2,X3} = y ]

=⇒ Ps = E[E[w(Y1,Y1)|X1,X1 > Y1]]

≤ E[E[v(max{X2,X3},X2,X3)|X1,X1 > Y1]] = Pe �
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The Linkage Principle

In a second-price auction, the winner’s payment depends on the

second-highest bidder’s information.

In an English auction, the winner’s payment depends on the information of

all losing bidders.

Linking a bidder’s expected payments to others’ information weakens the

winner’s curse.

This leads to more aggressive bidding and, as the pie is fixed in all three

auctions, greater expected revenues for the auctioneer.
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Other implications of the Linkage Principle

Honesty is the best policy for the auctioneer.

Greater revenues with royalty payments.
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Caveats to the Linkage Principle

May not hold in asymmetric models or in multi-object auctions

Auctions August 4, 2015 26 / 29



Caveats to the Linkage Principle

May not hold in asymmetric models

or in multi-object auctions

Auctions August 4, 2015 26 / 29



Caveats to the Linkage Principle

May not hold in asymmetric models or in multi-object auctions

Auctions August 4, 2015 26 / 29



Efficiency

In a pure common values environment, everything is efficient.

In non-common value settings ...

In a symmetric model, each of the three auctions – first-price, second-price,

English – allocate the object to the bidder with the highest signal.

Is that efficient?
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An example of inefficient allocation

V1 = X1 + cX2, V2 = X2 + cX1, c > 1

X1 and X2 are each identically distributed on [0, 1] – may be dependent.

bs(x) and bf (x) are increasing in x .

If X1 > X2 then V1 < V2.

Therefore, the bidder with the lower valuation obtains object!
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A sufficient condition for efficiency

Recall that, for our symmetric model,

v(x1, x−1) = E[V1|X1 = x1,X−1 = x−1]

= E[Vi |Xi = x1,X−i = x−1]

and v(x1, x−1) is symmetric in its last n − 1 arguments.

Single-crossing condition: If

∂v(x1, x2, . . . , xn)

∂x1
≥ ∂v(x1, x2, . . . , xn)

∂x2

then the three auctions are efficient in symmetric model.

In asymmetric models, English auctions are more efficient than

second-price auctions are more efficient than first-price auctions.
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